The following procedure is for thawing and weekly maintenance of WEHI-231 cells. The procedure is carried out under a laboratory hood, using sterile procedures.

Standard Growth Conditions
2. Use a maximum volume of 10 ml medium for 25-cm² flasks; 30 ml medium for 75-cm² flasks; 60 ml medium for 150-cm² flasks; 70 ml medium for 175-cm² flasks; and 90 ml medium for 225-cm² flasks.
3. Maintain cells in a standard cell culture incubator with 5% CO₂ at 37 °C. Place flasks in the incubator flat on their broad sides, never upright.

Cell Thawing Procedure
1. Warm Stanford RPMI to 37 °C in a water bath.
2. Prepare a 15-ml conical tube with 10 ml of warm, sterile medium.
3. Thaw one vial of WEHI cells at 37 °C and transfer to the conical tube containing the medium.
4. Centrifuge the cells at 230 g for 5 min.
5. Remove supernatant, resuspend cell pellet in 10 ml of 37 °C medium, and transfer to a 75-cm² tissue culture flask.
6. On the following day, count the cells with a hemacytometer and check cell viability with 10 µl of 0.4% trypan blue solution for 100 µl cell suspension.
7. Split cells as described below based on viable cell count.

Treatment of Tissue Culture Flasks Containing Cells for Counting and Splitting Cells
 The following is a standard procedure for treatment of flasks for collecting and counting cells.
1. Warm Stanford RPMI to 37 °C in a water bath.
2. Rinse each flask 4 times by pipetting medium from the flask across the bottom using a 5-ml disposable pipette.
3. Pool all flasks that were prepared on the same date with the same cell density using a 25-ml disposable pipette.
4. Mix the contents of the flask by pipetting up and down with a 25-ml disposable pipette.
5. Count the cells using a Coulter Counter or hemacytometer and split the cells according to the weekly culture procedure (see below).
Weekly Culture Procedure

Friday
1. Prepare cells at 1×10^4 cells/ml in 75-cm2 flasks in the number of flasks necessary based on experimental needs for the upcoming week. Assume that 1×10^4 cells/ml will yield 8 to 10×10^5 cells/ml after 72 hr in culture.

Monday
2. Use the flasks prepared on Friday at 1×10^4 cells/ml to prepare one set of flasks at 2×10^5 cells/ml to be used in Tuesday’s experiments.
3. Prepare the number of flasks necessary based upon the number of cells needed for Tuesday. Assume that 2×10^5 cells/ml will yield 6 to 8×10^5 cells/ml after 16 to 24 hr in culture.
4. Prepare another set of flasks at 4×10^4 cells/ml for splitting on Wednesday.

Tuesday
5. Use the flasks prepared on Monday at 2×10^5 cells/ml for any experiments planned for the day.
6. Use the remaining cells in the flask to prepare cells at 2×10^5 cells/ml for Wednesday’s experiments.
7. Prepare the appropriate number of flasks to generate the necessary number of cells for Wednesday’s experiments.

Wednesday
8. Use the flasks prepared on Tuesday at 2×10^5 cells/ml for any experiments planned for the day.
9. Use the remaining cells in the flask to prepare cells at 2×10^5 cells/ml for Thursday’s experiments.
10. Prepare enough flasks to generate the necessary number of cells for Thursday’s experiments.
11. Use cells that were prepared at 4×10^4 cells/ml on Monday to prepare a set of flasks at 4×10^4 cells/ml for splitting on Friday. If necessary, use the remaining cells in the flask to prepare cells at 2×10^5 cells/ml for additional experiments on Thursday.

Thursday
12. Use the flasks prepared at 2×10^5 cells/ml on Wednesday for experiments planned for the day.
13. Use the remaining cells in the flask to prepare cells at 2×10^5 in the number of flasks necessary based on experimental needs for Friday.

Friday
14. Use the flasks prepared at 2×10^5 cells/ml on Thursday for experiments planned for the day.
15. Use the flasks prepared at 4×10^4 cells/ml on Wednesday to prepare a set of flasks at 1×10^5 cells/ml for the following week.
Reagents and Materials
Supplemented RPMI medium 1640—Stanford (Stanford RPMI): AfCS Solution Protocol ID PS00000432

Tissue culture flask, 25 cm²: Corning Inc.; catalog no. 430639
Tissue culture flask, 75 cm²: Corning Inc.; catalog no. 430641
Tissue culture flask, 150 cm²: Corning Inc.; catalog no. 430825
Tissue culture flask, 175 cm²: Corning Inc.; catalog no. 431080
Tissue culture flask, 225 cm²: Corning Inc.; catalog no. 431082
Conical tube, 15 ml: Corning Inc.; catalog no. 430052
Hemacytometer: Fisher Scientific; catalog no. 02-671-5
Trypan blue solution, 0.4%: GIBCO/Invitrogen; catalog no. 15250061
Pipette, 5 ml: Falcon; catalog no. 357543
Pipette, 25 ml: Falcon; catalog no. 357525
Z1 Coulter Counter: Beckman Coulter; catalog no. 6605699

Author: Liz Gehrig, Takako Mukai, and Mary Verghese
Date: 08/27/02
Approved: Grischa Chandy and Nancy O'Rourke